Tartalomjegyzék:
- 1. lépés: Szükséges hardver:
- 2. lépés: Hardver csatlakoztatása:
- 3. lépés: A nyomásmérés kódja:
- 4. lépés: Alkalmazások:
Videó: Nyomásmérés CPS120 és részecskefoton segítségével: 4 lépés
2024 Szerző: John Day | [email protected]. Utoljára módosítva: 2024-01-30 09:41
A CPS120 kiváló minőségű és olcsó kapacitív abszolút nyomásérzékelő, teljesen kompenzált kimenettel. Nagyon kevesebb energiát fogyaszt, és egy ultra kicsi mikroelektromechanikus érzékelőt (MEMS) tartalmaz a nyomásméréshez. Egy szigma-delta alapú ADC is benne van, hogy teljesítse a kompenzált kimenet követelményét.
Ebben az oktatóanyagban szemléltetjük a CPS120 érzékelőmodul és a részecskefoton összekapcsolását. A nyomásértékek leolvasásához fotont használtunk I2c adapterrel. Ez az I2C adapter megkönnyíti és megbízhatóbbá teszi a kapcsolatot az érzékelőmodullal.
1. lépés: Szükséges hardver:
A célunk eléréséhez szükséges anyagok a következő hardverkomponenseket tartalmazzák:
1. CPS120
2. Foton részecske
3. I2C kábel
4. I2C pajzs részecske fotonhoz
2. lépés: Hardver csatlakoztatása:
A hardvercsatlakozási szakasz alapvetően elmagyarázza az érzékelő és a részecskefoton között szükséges vezetékeket. A megfelelő kapcsolatok biztosítása az alapvető szükséglet, amikor bármilyen rendszeren dolgozik a kívánt kimenet érdekében. Tehát a szükséges kapcsolatok a következők:
A CPS120 az I2C -n keresztül fog működni. Íme a példa kapcsolási rajz, amely bemutatja, hogyan kell bekötni az érzékelő egyes interfészeit.
A doboz készenlétben I2C interfészre van konfigurálva, ezért javasoljuk, hogy használja ezt a csatlakozást, ha egyébként agnosztikus. Csak négy vezetékre van szüksége!
Csak négy csatlakozóra van szükség Vcc, Gnd, SCL és SDA csapokra, és ezeket I2C kábel segítségével kell csatlakoztatni.
Ezeket az összefüggéseket a fenti képek mutatják be.
3. lépés: A nyomásmérés kódja:
Kezdjük most a részecske kóddal.
Miközben az érzékelő modult használja az Arduino -val, az application.h és a spark_wiring_i2c.h könyvtárat is tartalmazza. Az "application.h" és a spark_wiring_i2c.h könyvtár azokat a funkciókat tartalmazza, amelyek megkönnyítik az i2c kommunikációt az érzékelő és a részecske között.
A teljes szemcsekódot az alábbiakban adjuk meg a felhasználó kényelme érdekében:
#befoglalni
#befoglalni
// A CPS120 I2C címe 0x28 (40)
#define Addr 0x28
kettős hőmérséklet = 0,0, nyomás = 0,0;
üres beállítás ()
{
// Változó beállítása
Particle.variable ("i2cdevice", "CPS120");
Részecske.változó ("nyomás", nyomás);
Particle.variable ("hőmérséklet", hőmérséklet);
// Inicializálja az I2C kommunikációt MASTER -ként
Wire.begin ();
// Inicializálja a soros kommunikációt, állítsa be az átviteli sebességet = 9600
Sorozat.kezdet (9600);
}
üres hurok ()
{
előjel nélküli int adatok [4];
// Indítsa el az I2C átvitelt
Wire.beginTransmission (Addr);
késleltetés (10);
// Állítsa le az I2C átvitelt
Wire.endTransmission ();
// 4 bájt adat kérése
Wire.requestFrom (Addr, 4);
// 4 bájt adat olvasása
// nyomás msb, nyomás lsb, temp msb, temp lsb
ha (Wire.available () == 4)
{
adatok [0] = Wire.read ();
adatok [1] = Wire.read ();
adatok [2] = Wire.read ();
adatok [3] = Wire.read ();
}
// Az értékek konvertálása
nyomás = (((((adatok [0] & 0x3F) * 265 + adatok [1]) / 16384,0) * 90,0) + 30,0;
cTemp = (((([adatok] [2] * 256) + (adatok [3] és 0xFC)) / 4,0) * (165,0 / 16384,0)) - 40,0;
fTemp = cTemp * 1,8 + 32;
// Adatok kimenete a műszerfalra
Particle.publish ("A nyomás:", String (nyomás));
késleltetés (1000);
Particle.publish ("Hőmérséklet Celsius -ban:", String (cTemp));
késleltetés (1000);
Particle.publish ("Hőmérséklet Fahrenheitben:", String (fTemp));
késleltetés (1000);
}
A Particle.variable () függvény létrehozza a változókat az érzékelő kimenetének tárolására, a Particle.publish () függvény pedig megjeleníti a kimenetet a webhely műszerfalán.
Az érzékelő kimenete a fenti képen látható.
4. lépés: Alkalmazások:
A CPS120 számos alkalmazással rendelkezik. Használható hordozható és helyhez kötött barométerekhez, magasságmérőkhöz stb. Beépíthető légszabályozó rendszerekbe, valamint vákuumrendszerekbe.
Ajánlott:
A gyorsulás mérése ADXL345 és részecskefoton segítségével: 4 lépés
A gyorsulás mérése ADXL345 és részecskefoton segítségével: Az ADXL345 egy kicsi, vékony, ultralow teljesítményű, 3 tengelyes gyorsulásmérő, nagy felbontású (13 bites) méréssel, ± 16 g-ig. A digitális kimeneti adatok 16 bites kettes kiegészítésként vannak formázva, és az I2 C digitális interfészen keresztül érhetők el. Méri a
Mágneses mező mérése HMC5883 és részecskefoton segítségével: 4 lépés
Mágneses mező mérése HMC5883 és részecskefoton segítségével: A HMC5883 egy digitális iránytű, amelyet alacsony mezőű mágneses érzékelésre terveztek. Ennek az eszköznek a mágneses mező széles tartománya +/- 8 Oe, és a kimeneti sebessége 160 Hz. A HMC5883 érzékelő magában foglalja az automatikus kivezető heveder meghajtókat, az eltolás törlését és egy
Nyomásmérés CPS120 és Arduino Nano használatával: 4 lépés
Nyomásmérés a CPS120 és az Arduino Nano segítségével: A CPS120 kiváló minőségű és olcsó kapacitív abszolút nyomásérzékelő, teljesen kompenzált kimenettel. Nagyon kevesebb energiát fogyaszt, és egy ultra kicsi mikroelektromechanikus érzékelőt (MEMS) tartalmaz a nyomásméréshez. Szigma-delta alapú
Nyomásmérés CPS120 és Raspberry Pi használatával: 4 lépés
Nyomásmérés CPS120 és Raspberry Pi használatával: A CPS120 kiváló minőségű és olcsó kapacitív abszolút nyomásérzékelő, teljesen kompenzált kimenettel. Nagyon kevesebb energiát fogyaszt, és egy ultra kicsi mikroelektromechanikus érzékelőt (MEMS) tartalmaz a nyomásméréshez. Szigma-delta alapú
Páratartalom mérés HYT939 és részecskefoton segítségével: 4 lépés
Páratartalom mérés HYT939 és részecskefoton segítségével: A HYT939 egy digitális páratartalom -érzékelő, amely I2C kommunikációs protokollon működik. A páratartalom kulcsfontosságú paraméter az orvosi rendszerek és laboratóriumok tekintetében, ezért e célok elérése érdekében megpróbáltuk összekapcsolni a HYT939 -et a málna pi -vel. ÉN